skip to main content


Search for: All records

Creators/Authors contains: "Gries, Corinna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    For many ecologists, publishing data in a data repository is a new, unfamiliar task. To reduce the learning curve, the Environmental Data Initiative has developed user‐friendly software to make capturing and submitting data and metadata a simple process. In this article, we introduce ezEML and discuss use cases for researchers who publish data infrequently or information managers who regularly update multiple datasets.

     
    more » « less
  2. The LAGOS-US LIMNO data package is one of the core data modules of LAGOS-US, an extensible research-ready platform designed to study the 479,950 lakes and reservoirs larger than or equal to 1 ha in the conterminous US (48 states plus the District of Columbia). The LIMNO module contains in situ observations of 47 parameters of lake physics, chemistry, and biology (hereafter referred to as chemistry) from lake surface samples (defined as observations taken from the epilimnion of a lake) obtained from the Water Quality Portal, the National Lakes Assessment (2007, 2012, 2017), and NEON programs. LIMNO provides 3,511,020 observations across all parameters collected between 1975 and 2021 from 20,329 lakes; the number of observations per lake ranged from 1 to 20,605 with a median of 32. The database design that supports the LAGOS-US research platform was created based on several important design features: lakes are the fundamental unit of consideration, all lakes in the spatial extent above the minimum size must be represented, and most information is connected to individual lakes. The design is modular, interoperable (the modules can be used with each other, as well as other comprehensive lake data products such as the USGS NHD), and extensible (future database modules can be developed and used in the LAGOS-US research platform by others). Users are encouraged to use the other two core data modules that are part of the LAGOS-US platform: LOCUS (location, identifiers, and physical characteristics of lakes and their watersheds) and GEO (characteristics defining geospatial and temporal ecological setting quantified at multiple spatial divisions) that are each found in their own data packages. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. The research data repository of the Environmental Data Initiative (EDI) is building on over 30 years of data curation research and experience in the National Science Foundation-funded US Long-Term Ecological Research (LTER) Network. It provides mature functionalities, well established workflows, and now publishes all ‘long-tail’ environmental data. High quality scientific metadata are enforced through automatic checks against community developed rules and the Ecological Metadata Language (EML) standard. Although the EDI repository is far along in making its data findable, accessible, interoperable, and reusable (FAIR), representatives from EDI and the LTER are developing best practices for the edge cases in environmental data publishing. One of these is the vast amount of imagery taken in the context of ecological research, ranging from wildlife camera traps to plankton imaging systems to aerial photography. Many images are used in biodiversity research for community analyses (e.g., individual counts, species cover, biovolume, productivity), while others are taken to study animal behavior and landscape-level change. Some examples from the LTER Network include: using photos of a heron colony to measure provisioning rates for chicks (Clarkson and Erwin 2018) or identifying changes in plant cover and functional type through time (Peters et al. 2020). Multi-spectral images are employed to identify prairie species. Underwater photo quads are used to monitor changes in benthic biodiversity (Edmunds 2015). Sosik et al. (2020) used a continuous Imaging FlowCytobot to identify and measure phyto- and microzooplankton. Cameras at McMurdo Dry Valleys assess snow and ice cover on Antarctic lakes allowing estimation of primary production (Myers 2019). It has been standard practice to publish numerical data extracted from images in EDI; however, the supporting imagery generally has not been made publicly available. Our goal in developing best practices for documenting and archiving these images is for them to be discovered and re-used. Our examples demonstrate several issues. The research questions, and hence, the image subjects are variable. Images frequently come in logical sets of time series. The size of such sets can be large and only some images may be contributed to a dedicated specialized repository. Finally, these images are taken in a larger monitoring context where many other environmental data are collected at the same time and location. Currently, a typical approach to publishing image data in EDI are packages containing compressed (ZIP or tar) files with the images, a directory manifest with additional image-specific metadata, and a package-level EML metadata file. Images in the compressed archive may be organized within directories with filenames corresponding to treatments, locations, time periods, individuals, or other grouping attributes. Additionally, the directory manifest table has columns for each attribute. Package-level metadata include standard coverage elements (e.g., date, time, location) and sampling methods. This approach of archiving logical ‘sets’ of images reduces the effort of providing metadata for each image when most information would be repeated, but at the expense of not making every image individually searchable. The latter may be overcome if the provided manifest contains standard metadata that would allow searching and automatic integration with other images. 
    more » « less